© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

Trial Evaluation

of

Fuel Performance Catayst - 1 (FPC-1)

by

Triangle Gas Company

Butler, Pennsylvania

May 28, 1987

Report prepared for Triangle Gas

by

UHI Corporation

Provo, Utah

and

Research Development Products

Evans City, Pennsylvania

Abstract

This paper will discuss the effect of an iron based fuel catalyst (ferrous picrate) upon fuel economy and exhaust gas emissions in a fleet of diesel powered tanker trucks operated by Triangle Gas Company, Butler, Pennsylvania. It will be shown that the catalyst can provide significant cost savings to the diesel fleet operated by Triangle Gas. It will also be shown that a test method that measures changes in the carbon containing gases in the exhaust stream is an accurate means of determining changes in fuel flow to the engine.

Introduction

An aftermarket combustion improver called Fuel Performance Catalyst - 1 (FPC-1) contains an iron based catalyst (ferrous picrate) that has been tested extensively in EPA recognized independent and university affiliated laboratories. These tests, in both gasoline and diesel powered passenger vehicles, have demonstrated that the catalyst can provide fuels savings of 2% to 10% depending upon vehicle operating parameters, equipment condition, age and mileage.

Field testing, primarily in heavy duty diesel fleets, substanciates laboratory findings and also reveals the catalyst can be an effective means of further reducing operating costs by inhibiting the buildup of hard carbon deposists on critical engine components.

This report summarizes the results of the Triangle Gas Company evaluation of the effect of FPC-1 on fuel economy in it's fleet of diesel powered tanker trucks.

Measurement of Fuel Economy -Carbon Balance vs Direct Measurement

Until late 1973, vehicle fuel economy had been determined primarily by using various test track or road test procedures. In September. 1973, the U.S. Environmental Protection Agency (EPA) introduced a method of determining vehicle fuel economy in conjunction with its chassis dynamometer emissions test. This method determines fuel consumption based upon vehicle exhaust emissions through a "carbon balance" calculation rather than a direct measurement of fuel consumed.

Starting in 1974, the carbon balance method was used solely in the EPA, CVS cold start emissions test cycle (LA-4 Cycle). In 1975, the cycle was modified adding a hot start (FTP). Later, a highway test was also developed (HFET).

A series of tests done by Ford Motor Company compared the traditional fuel measurement techniques (volumetric or gravimetric) to the carbon balance method. The results, published in SAE Technical Paper Series 75002 (EXHIBIT A) entitled "Improving the Measurement of Chassis Dynamometer Fuel Economy", confirmed

"fuel economy results obtained by carbon mass balance calculation of carbon containing components in the vehicle exhaust are at least as accurate and repeatable as those obtained by direct fuel measurement of fuel consumed."

The Ford Motor study determined that the most important factors in the measurement of fuel consumption with the carbon balance method are:

- * For fuel consumption, the measurement of CO2
- * For distance traveled, the dynamometer to vehicle interface conditions, precision and manner in which the vehicle is driven
- * Use of standardized test equipment and procedures, calibration and ambient condition correction methods.

The exhaust gas analysis/carbon balance technique of determining fuel consumption changes used by RDP and UHI personnel uses a state-of-the-art, non-dispersive infrared (NDIR) exhaust gas analyzer made by Sun Electric Corporation, to measure CO2 and other carbon containing exhaust gases. The Sun Electric SGA-9000 Exhaust Gas Analyzer is approved by the EPA for vehicle emissions analysis. The SGA-9000 is calibrated internally using Scotty Calibration Gases as recommended by Sun Electric. A SGA-9000 brochure with instrument specifications is attached in Exhibit B.

The method used by UHI and RDP does not require that the vehicle travel, nor does the vehicle interface with a chassis dynamometer during testing. Consequently, inaccuracies created by improper dynamometer to vehicle interfacing and errors in driving do not exist. Further, a miles per gallon figure is not given as a result. This method measures fuel flow to the engine at a specified load and rpm, and makes comparisons on a percentage basis between the consumption of control fuel (not treated with FPC-1) and the FPC-1 treated fuel at that load.

Ambient conditions are not corrected for in this method since studies by Ford Motor show ambient conditions have a maximum variability effect of only 0.6% on CO2 readings.

Although, not as controlled as an EPA laboratory test, the carbon balance method utilized by UHI is the most accurate and practical means of measuring fuel consumption changes in the field.

Additionally, the carbon balance method has consistently proven to be more accurate then monthly mpg fleet records.

The technique measures exhaust concentrations of carbon dioxide (CO2), carbon monoxide (CO), oxygen (O2), and unburned hydrocarbons (HC). Exhaust gas temperature is also measured and engine load is determined from engine tachometer readings.

Methodology

The fleet of eight diesel powered tanker trucks owned and operated by Triangle Gasoline Company was selected as the test fleet.

After calibrating the SGA-9000 analyzer and the IMC thermocouple, and performing a leak test on the sampling hose and connections, each truck engine was brought up to stable operating temperature as verified with engine water temperature and exhaust temperature. No exhaust data was recorded until each truck engine had stabilized.

The fleet was first tested, operating at 1900 rpm, followed by a test at 1600 rpm. Readings of CO2, CO, HC (measured as CH4), O2 and exhaust temperature were taken at approximately 30 second intervals.

After recording the first two readings, the SGA-9000 auto calibrating button was depressed and the instrument "checked itself" to prevent any drift. This self checking procedure was repeated after each set of two data points throughout the entire 1900 and 1600 rpm test. Several readings were taken on each truck and at each rpm. The data sheets are enclosed in Exhibit C.

After control testing, the fuel storage tank from which the Triangle fleet is exclusively fueled, was treated with FPC-1 at the recommended 1 to 1600 ratio (1 oz. FPC-1 to 12.5 gallons diesel). This took place on the evening of April 16, 1987.

On May 20, 1987, after accumulating a fleet average of 5,261 miles per truck with FPC-1 treated fuel, the above procedure was repeated. The treated fuel data sheets are attached in Exhibit D.

All fuel used during the baseline and treated test segments was #2 diesel purchased through the same fuel supplier.

Special Note:

- 1.) The test procedure calls for a sequence of rpm testing at 1900 and 1600 rpm, on the same equipment, to show that the change in fuel flow between the two loads can be demonstrated with the SGA-9000 Exhaust Gas Analyzer. It is obvious that a drop in fuel consumption will occur when reducing rpm from 1900 to 1600 and it shows up readily during the baseline test. This validates the concept of fuel flow measurement with exhaust gas analysis.
- 2.) The 1900 rpm load is more indicative of actual engine operation and improvements at this rpm are more meaningful.
- 3.) After having completed treated fuel testing on eight of the nine trucks in the Triangle fleet, a leak was detected in the SGA-9000 sampling hose. Several of the trucks were retested to determine the percent of dilution in the exhaust gases caused by the leak. The percent dilution was determined to be an absolute .3% CO2 and all CO2 readings were corrected. The correction resulted in a decrease in the overall fuel savings demonstrated by the addition of the catalyst.
- 4.) A qualitative technique for determining reductions in smoke and particulate was performed during both control and treated fuel test segments. This was done by attaching a new 25 micron filter to the SGA-9000 sampling hose at the beginning of each test segment. The filter traps unburned fuel that is exhausted from the engine as particulate or soot. A comparison of the control fuel and treated fuel filters revealed that the fuel was burning much cleaner with FPC-1 as particulate volume was visibly reduced in the treated fuel filter. The control test segment involved ninety minutes of sampling; the treated segment lasted one hundred and five minutes.

Equipment List

Unit #	Make	Engine	Mileage
116	Cummins	400	240,490
114	Cummins	400	113,792
112	Cummins	350	27,459
117	Cummins	350	83,926
102	Detroit	430	491,188
101	Detroit	430	613,849
115	Detroit	430	474,779
30	Mack	673	178,101

Summary

The data from the 1900 rpm test control and treated fuel is summarized on Table I. The 1600 rpm data is summarized on Table TT.

Table I
Summary of Exhaust Gas Data at 1900 RPM

	CO	<u>HC</u>	<u>CO2</u>	02	Exh. Temp.
Control	0.026%	19.70ppm	2.17%	18.48%	331.8 * F
Treated	0.025%	20.10ppm	2.00%	18.63%	331.5 * F

Table II

Summary of Exhaust Gas Data at 1600 RPM

	<u>co</u>	<u>HC</u>	<u>CO2</u>	<u>02</u>	Exh. Temp.
Control	0.026%	25.15ppm	1.81%	18.86%	297.7 *F
Treated	0.025%	21.20ppm	1.71%	19.00%	298.9 *F

From the above data, volume fractions can be easily calculated and weighed using the known molecular weight of each gas. A total molecular weight and engine performance factor can then be calculated from which fuel consumption changes can be determined. The volume fractions, total molecular weights, and engine performance factors for the 1900 rpm data are found on Table III. The same for the 1600 rpm data are found on Table IV. The engineering formuli from which these are calculated are found in Exhibit E.

Table III

Volume Fractions for the 1900 RPM Data

	Control	Treated
VfCO	0.00026	0.00025
VfHC	0.0000197	0.0000201
VfCO2	0.0217	0.0200
VfO2	0.1848	0.1863

Table IV

Volume Fractions for the 1600 RPM Data

	Control	Treated
VFCO	0.00026	0.00025
VFHC	0.00002515	0.00002120
VFC02	0.0181	0.0171
VFO2	0.1886	0.1900

Total Molecular Weights and Performance Factors

Mwt1	29.05	Mwt2	29.03
pf1	333423.31	pf2	353624.46
PF1	210523.48	PF2	223258.55

Percent Change in Fuel Flow

223258.55 - 210523.48 = 12735.07

 $\frac{12735.07}{210523.48} \times 100 = +6.05\%$

Conclusion

Based upon the data gathered during exhaust gas testing with and without the FPC-1 Fuel Performance Catalyst, the addition of FPC-1 to the fuel used by the Triangle Gas test fleet created an average 8.26% reduction in fuel consumed at 1900 rpm and an average 6.05% reduction in fuel consumption at 1600 rpm.

Additionally, the catalyst treated fuel burned cleaner as demonstrated by the comparison of the control and treated fuel sampling hose filters. Photographs of the filters are found in Exhibit F.

Baseline

Treated

TRIANGLE GASOLINE CO., OF BUTLER **DISTRIBUTORS OF** GASOLINE, FUEL AND KENDALL LUBRICANTS 1100 NORTH MAIN STREET EXTENSION P. O. BOX 30 BUTLER, PENNA, 16001 PHONE 283 - 0750 DAVID E. ZINN EARL C. ZINN

August 11, 1987

Mr. Lee Pope U H I Corp. 750 North 200 W Suite 306 Provo, UT 84601

Dear Mr. Pope:

As a company, we have been selling #2 Fuel for probably twenty years and during that time never once have we ever used or offered for sale, an additive of any type.

About two years ago your salesman, Mr. Ed Nusser, called on us and asked if we would place your product, FPC-1, in the fuel oil of one of our customers, namely Armco Inc. Needless to say, at that point we were skeptical but agreed to do it anyway as a favor to Armco. Time passed and Ed again called on us, only this time he wanted to run a test on our own fleet using FPC-1. Again, we were skeptical but went ahead. As a result of this test, and the quality of the test equipment, we were most impressed. Probably the biggest factor was the cleanliness of the filtration unit in the test equipment after the months usage of FPC-1. In addition, our records showed an approximate 7% savings in fuel mileage on our over all fleet. this time, Ed approached us about distributing the product within our sales area and as you know, we are doing just that.

We feel that given some time and reasonable effort, the product will definitely become an important part of fleet maintanance for our customers as well as a good profit item for us. We are excited about your product and hope to become one of your most successful distributors.

Yours trally,

Company

dent

DEZ/nr

Exhaust Gas Analysis Form
ame of Company Telangle Oil
ate of TestAPRIL 16, 1987
ype of Equipment Tested
ingine Type and Specs Macn 673 T
dentification No. 30 Milage 17600/
ype of Test
mbient Air Temp
Exhaust Readings
CO HC CO O2 Exh. Temp. RPM
. 05 34 2,86 17.4 348 1900
. 15 36 2.84 17.4 350 1900
. 15 35 2.78 R.5 354 1900
.04 35 2,77 17.7 354 1900
.04 35 -2,77 17,7 354 1900
. 15 35 226 18.2 302 1600
.05 35 2.26 18.2 299 1600
.05 35 2,28 18.5 299 1600
0.05 36 2,28 182 304 1600
10.05 37 2,28 18.2 301 1600
Length of Test in minutes // Minus
Signature of Technicians

RIGHT Side EXH

		Exhaust Ga	as <u>Analysis</u>	Form	
Name of Comp	oany	TRIANALE	= 6AS		
Date of Test		•			
Type of Equi					ŀ
-				TURBO	
77.0	ala spoo	700		IONPO	
Identificati	ion No.	116	n	Milage 240	490
Type of Test					á
Ambient Air			2		-
			ust Readings	5	
CO	HC	<u>CO</u> 2	02	Exh. Temp.	RPM
103	22	2.14	18.7	368	1900
203	22	2.17	18.4	367	1900
3,03	22	2,15	19.0	366	1900
403	22	2.15	18.5	366	1900
5 03	23	.2.14	19.0	363	1900
6. ,03	24			321	1600
7. 103		100 may 200	18.7	3/9	1600
8. ,03		18,7	19.2	323	1600
903	23	1.90	18.8	324	1600
1003	24	1.87	19.7	323	1600
Length of Te	est in mi	nutes	9		
Signature of	Technic	ians			

		Exhaust Ga	as <u>Analysis</u>	Form	
Name of Com	npany	TRIANGE	LE 6-45		
Date of Tes	st	4-16	-87		
Type of Equ	uipment Te	ested			ŀ
Engine Type	e and Spec	cs 4	00 cun	n m 1 NS	TURBO
,					
Identificat	tion No	114	N	Milage	13792
Type of Tes	st				
Ambient Air	Temp.	-			
		Exhai	ust Readings	5	
<u>CO</u>	HC	<u>co</u> 2	02	Exh. Temp.	RPM
103	28	1.71		355	1960
203	25	1.70	18.9	356	1900
303	28	1.72	19.4	356	1900
403	29	1.70	18.9	355	1900
5,03	28	1.72	18.8	357	1900
603	24	1.43	19.	332	1600
703	27	1.42	191	332	1600
8. ,03	28	1,48	19.3	332	1600
9. 102	28	1.51	19./	332	1600
1003	28	1.51	19.3	33/	1600
Length of	Test in m	inutes	q		
Signature	of Techni	cians			

HDDZ

			Ext	naust Gas A	nalysis <u>F</u> o	orm	*	
Name	of	Company	TR	IANGLE	GAS			
Date	of	Test	4-	17-87				
		Equipment T						t
		Type and Spe					TUR BO	
.5								
Iden	tif	ication No	/	ر <u>ک</u>	Mi	lage_	491 188	,
Туре	of	Test	:5					fi .
Ambi	ent	Air Temp		_				
				Exhaust	Readings			
	CO	HC		<u>CO</u> 2	02	Exh.	Temp.	RPM
1	,0	12 22		1.99	18.3		290	1900
2					18.3			1900
3.	(7	1:34_	18,7		293 292	1900
4	٠،() 2 15		176	18.6		29/	1900
5	, ()	13	•	1.71	18.7		292	1900
6	,c	,2 17	· ·	1.35	19.1		254	1600
7	. (18		1.33	19.		253	1600
8	,0	2 23		1,35	19.5	<u></u>	254	1600
9	, D	2 23	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.35	19.1	/	253	1600
10,	o'	2 2/		1.33	19.4		254	1600
Lerg	th (of Test in m	inutes	s 9				
Signa	atu	re of Techni	cians		A.			

		Exhaust Ga	as <u>Analysis</u>	Form	
Name of Comp	any	TRIAN	KLE OIL	1	
Date of Test	;				
Type of Equi					ŀ
			Cummin	TURBO	
	1	300			
Identificati	lon No	117	r	Wilage 3926	
Type of Test	-				
Ambient Air	Temp. 4	70			
			ust Reading:	5	
<u>CO</u>	<u>HC</u>	<u>co</u> 2	02	Exh. Temp.	RPM
103	29	1,96	18.3	351	1900
2 02	31	1.90	18.4	353	1900
303		1.89		354	1900
403	29	1.89	18.7	357	1900
503	28	. 1.89	19.2	358	1900
6. ,02	26	1.64	19.0	33 Z	1600
7		1.64	19.0	334	1600
802	26	1.63	19.4	335	1600
9,02					1600
10	26	1.64	19.1	333	1600
Length of T	est in mir	utes	II mis	/	
Signature o	f Technici	ans			

Exhaust Gas Analysis Form
Name of Company TRIANGLE GAS
Date of Test4-16-87
Type of Equipment Tested
Engine Type and Specs 350 CUMMINS TURBO
Identification No. 112 Milage 027459
Type of Test
Ambient Air Temp
Exhaust Readings
CO HC CO O2 Exh. Temp. RPM
1.03 22 2.41 18.0 356 1900
2. 113 22 2.44 17.9 356 1900
3.102 21 2.40 18.2 353 1900
4.02 21 2.42 18.1 351 1900
5.02 22 2.42 18.0 357 19.00
6.02 24 1,89 18.7 310 46001550
7.02 24 1,89 18,7 309 1600 1550
8.02 24 1,89 18.7 309 1600 1550
9.02 22 1.87 18.9 308 1606 1550
10.02 23 187 8.7 307 1600 1550
Length of Test in minutes 12 MINI
Signature of Technicians

724

Research Development Products • P.O. Box 53, Evans City, PA 16033 • 412/538-8842

Exhaust Gas Analysis Form

Name of Company TRIANGLE OIL							
Date of Test							
Type of Equipment Tested							
Engine Type and Specs 892 430 DET D TURBO							
Identification No. 101 Milage 6138490 Hold							
Type of T	est						
Ambient A	ir Temp						
		Exh	aust Reading	S		٠	
<u>CO</u>	<u>HC</u>	<u>co</u> 2	02	Exh. Temp.	RPM		
1,0	22	1.95	18.6	269	1900		
20]	22	1.94	18.6	270	1900		
3	22	1.93	19.5	269	1900		
402	22	1.93	18.7	269	1900		
5	22	1.92	19. 2	271	900		
6	22	1.71	18.8	250	1600		
702	22	1.71	18.8	250	1600		
802	24	1:70	18.9	248	1600		
9. 102	24	1.70	18.9	247	160		
1002	23	1.71	19.4	246	1600		
Length of	Length of Test in minutes						
Signature of Machaiaiana							

Type of Equipment Tested_				
Engine Type and Specs	430	DET	TURBO	

Identification No. 115 Milage 474779

Type of Test

Ambient Air Temp.

Exhaust Readings

<u>CO</u>	HC .	<u>co</u> 2	<u>02</u>	Exh. Temp.	RPM	
102	22	262	18.0	309	1900	
202	24	2.61	17.9	311	1900	
3. ,07	22	2.56	18.4	310	1900	
402	19	2.56	18.0	3//	1900	
502	19	2.56	17.9	3/0	1900	
602	22	2.29	18.4	281	1600	
7. :02	22	2,23	18.4	283	1600	
802	22	230	18.9	285	1600	
902	22	2.26	18.4	283	1600	
1002	22	2.24	19.0	281	1600	
Length of Te	est in min	utes	8			
Signature of Technicians						

Exhaust Gas Analysis Form

Name of Company TRIANGLE GAS							
Date of Test	m A	y 20, 87					
Type of Equip	oment Tested						
Engine Type a	and Specs33	O Cum	nINS TUR	Bo			
Identification No. + 112 Milage 31708 (4600)							
Type of Test							
Ambient Air 1	Cemp.			Ra	d FUEL		
	Exhaus	t Readings		γ ν	pump		
<u>CO</u>	HC CO ₂	02	Exh. Temp.	RPM			
103	172.161.86	/8.7	363	1900			
202	17 215 1.85	18.4	366	1900			
302	18 2-14 1.84	18.4	372	1900			
4. 102	18 2.14 1.84	18.4	37/	1900	10.5		
563	18 2.13 1.83	19.0	37.2	1900			
6. , 02	181.771,47	28.8	307	1600, 13	550		
7. 102	18 1757.45	18.8	309	1600-18	. 00		
802	18 1.76 1,46	18.9	309	1600 1	550		
902	18 1.77 1.47	18.6	311	100,10	550		
1062	221.751.45	18.8	314	1600-13	50		
Length of Test in minutes 14 min							
Signature of Technicians							

Signature of Technicians

Exhaust 0	Gas Analysis I	Form					
Name of Company TR	ignole 6	A5					
Date of Test <u>may 20, 1987</u>							
Type of Equipment Tested							
Engine Type and Specs 4	140 DET	TURBO					
Identification No. 7102	Mi	lage 49 36	09 1 C	2,			
Type of Test							
Ambient Air Temp							
Exha	aust Readings						
CO HC CO ₂	02	Exh. Temp.	<u>RPM</u>				
1. , 02 15 1.85 1.55	18.9	23 276	1900				
2. 102 17 1.86 1.56	18.81	272	1900_				
3. 102 17 1.801.52	19.2	273	1900				
462 17 182 1.52	18.8	274	1900				
5. 102 17 1.72 1.49	18.9	274	1900				
6. ,02 /8 1.48 1.18	19.5	245	1600				
7. 102 18 1501.20	19.1	245	1600				
8. 102 17 1.48/18	19.4	243	1600				
902 17 1.48 1.18	19,2	243	1600				
1062 19 148 1.18	19.4	243	1600				
Length of Test in minutes	9	mIN					

RDD &

Research Development Products • P.O. Box 53, Evans City, PA 16033 • 412/538-8842

505

Exhaust Gas Analysis Form TRIANGLE Name of Company may 20, 1987 Date of Test Type of Equipment Tested Engine Type and Specs 892 430 DET Identification No. - / O / Milage / Milage Type of Test Ambient Air Temp. Exhaust Readings CO HC <u>CO</u>2 02 Exh. Temp. RPM 15 19 1.63 189 269 1900 201 1,71 18.6 2. ,01 1900 3.,01 1.97 7.67 19.0 272 1900 18.7 274 1900 275 1900 25 3 1.44 19.2 1600 6. .02 18.9 7. 102 248 1600 8.,02 256 1600 9. 102 18 1.72 1.42 18.9 256 1600 10. .02 19 173 1.43 19.3 255 1600 Length of Test in minutes Signature of Technicians

Signature of Technicians_

ł
t
ł
ŀ
481674
RPM
1900
1900
1900
1900
.1900
1600
1600
1600
1600
1604

EDD

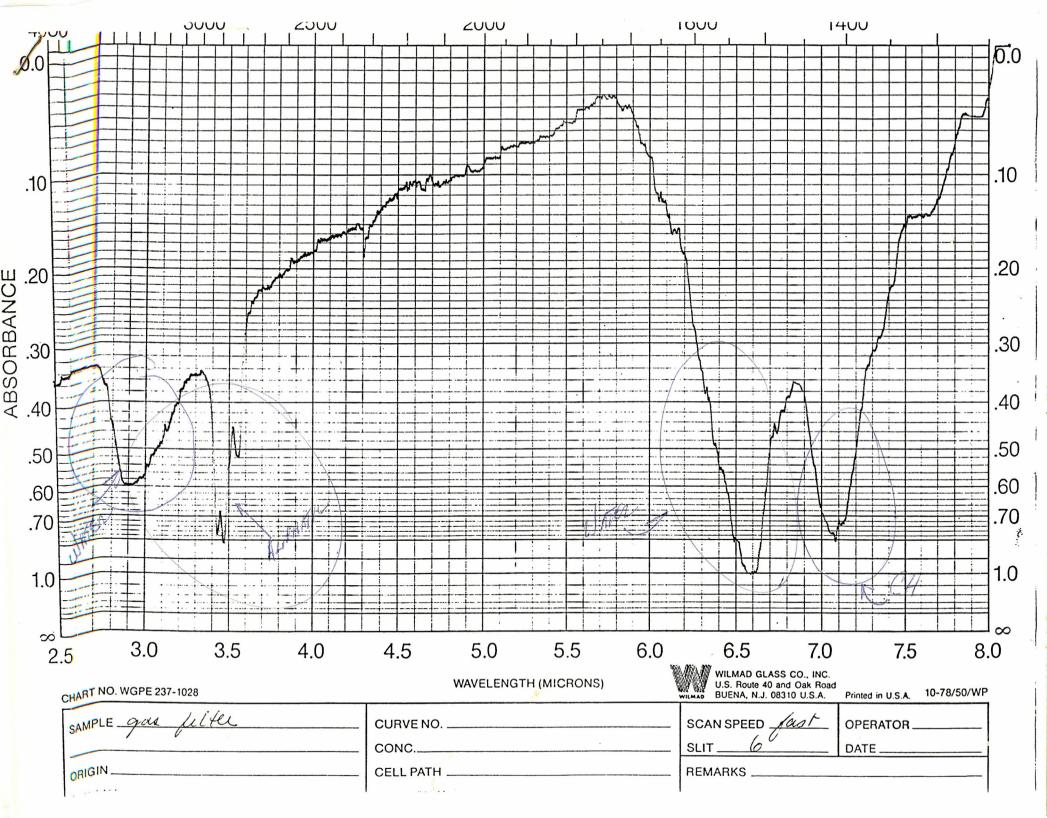
Exhaust Gas Analysis Form	
Name of Company TRIANGLE GAS	
Date of Test	
Type of Equipment Tested	
Engine Type and Specs 350 < Um min	s Turbo
Identification No. # 117 o.k Milage 90	0 658 (7,000
Type of Test_	
Amoient Air Temp	
Exhaust Readings	
CO HC CO ₂ O2 Exh. Temp.	RPM
1. ,03 27 1.80 19.3 364	1900
2. 103 26 1.80 18.4 368	1900
3. '63 27 1.75 19.2 364	1900
4. 103 27 1.75 18.5 363	1900
5. 103 26 1.76 18.5 363	1900
6. 103 27 1.51 19.4 337	KOO
7. 102 26 1.51 19.0 337	1600
8. 102 26 1.51 18.8 335	1600
9 03 27 1.51 19.5 335	1600
10. 162 26 1.51 18.9 333	1600
Length of Test in minutes	
Signature of Technicians	

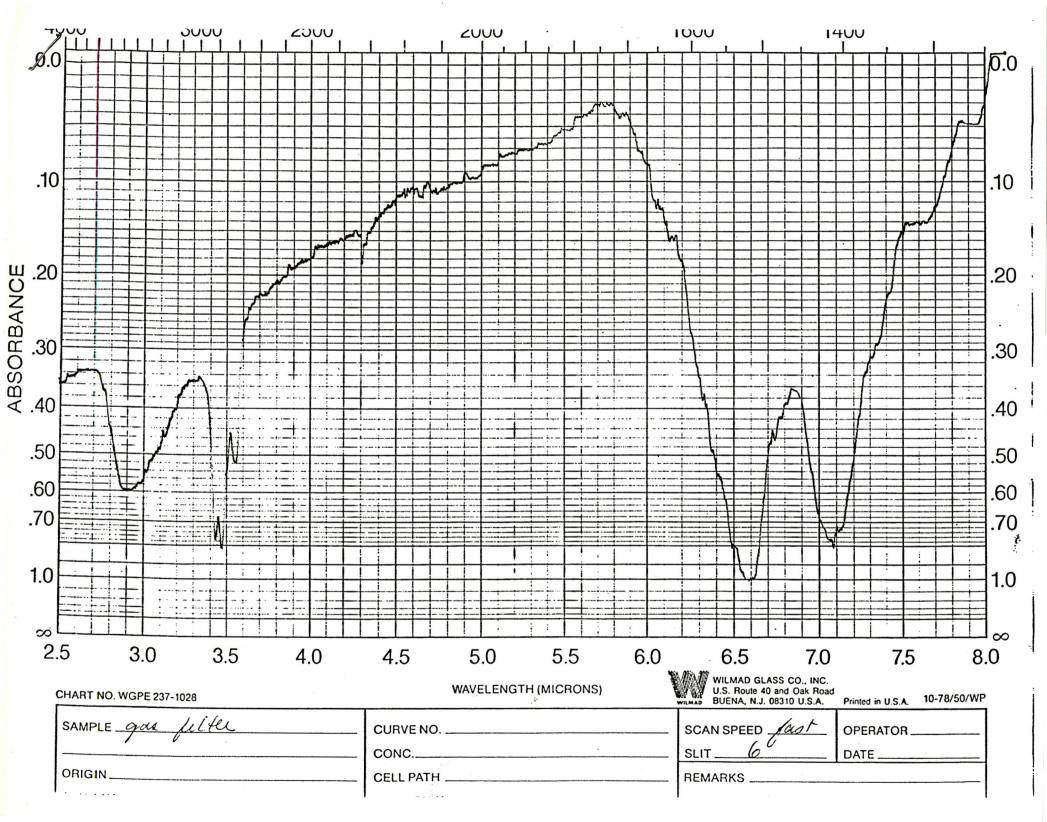
Exhaust Gas Analysis Form

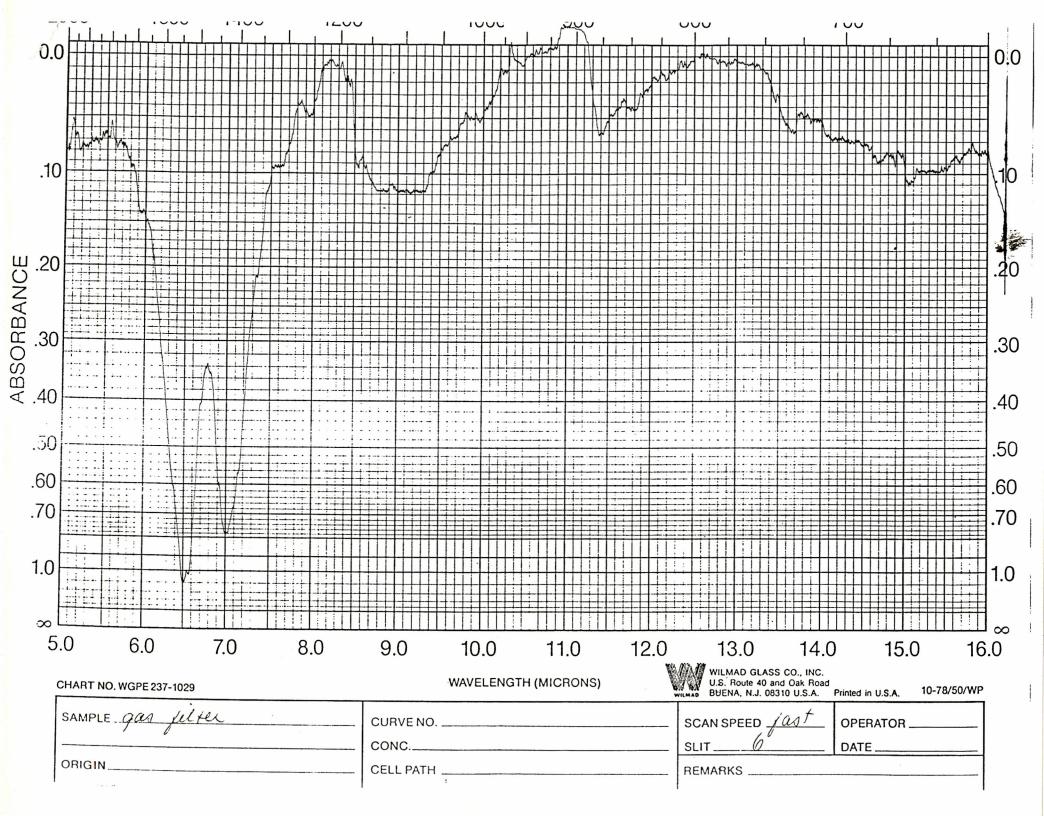
	12:			
Name of Comp	pany TRIANG	LE		
Date of Test		4/ 20,	87	
Type of Equi	ipment Tested	1		
Engine Type	and Specs 4	00 CUP	mins Ti	REO
Identificati	ion No. — 114	Mil	lage 640	5-1207
Type of Test				
Ambient Air				
		t Readings		
CO	<u>HC</u> <u>CO</u> 2	02	Exh. Temp.	RPM
1. 03	21 1.78 1.48	18.9	370	1900
2. 103	21 176 1.46	18.9	368	1900
3. 103	24 174 1.44	19.1	369	1900
403	24 1.73 1.43	19.0	367	1900
503	23 1.23 1.43	19.0	369	1900
6 03	24 152 1,22	19.4	340	1600
703	23 1501.22	19.1	340	1600
803	25 1.12 1.22	19.3	339	1600
903	24 150 1.20	19.1	339	1600
10. 103	25 1.51 1.21	19.2	336	1600
Length of Te	est in minutes	10	MIN	
Signature of	Technicians	¥ *		

A:20 8:10

Signature of Technicians


RIGHT SIDE


Exhaust Gas Analysis Form Name of Company TRIANGLE GAS Date of Test MAY 20, 1987 Type of Equipment Tested Engine Type and Spees ok Milage 246 950 (6000) Identification No. 7116 Type of Test Ambient Air Temp. Exhaust Readings <u>CO</u>2 CO HC 02 Exh. Temp. RPM 1. . 03 18.6 189 338 1900 1.96 1,66 2. 103 1.96 1.66 18.5 340 1900 3. 164 1.94 1.64 19.4 1900 18.6 4.103 1900 19.1 19.5 342 5. 103 1900 1600 10,151 19.6 19.8 314 6. ,03 7. 103 18.9 19.1 315 1600 8. ,03 9. .03 1.52 1600 10. 103 23 1.88 1.55 19.2 12.8 314 1600 Length of Test in minutes min



DDE

Exhaust (<u> Sas Analysis I</u>	Form	
Name of Company	€ 0/6		
Date of Test May 20	1287		
Type of Equipment Tested			
Fingine Type and Specs	ack 673		
Identification No. 430	Mi	lage <u>78</u> /	01 (2,100
Type of Test			
Ambient Air Temp. 67			
Exh	aust Readings		
CO HC CO ₂	<u>02</u>	Exh. Temp.	RPM
1. 104 19 245 2.15	18.0	351	1900
204 23 2.4 2.14	17.9	355	1900
3. 04 22 2.38 2.08	18.3	353	1900
404 23 23 2.08	18.1	355	1900
504 25 > 38208	18.3	356	1900
6. ,04 26 2.0 1.70	18.6	313	1600
7. 104 26 20 1.70	18.9	3/3	1600
804 26 2.0 1.70	18.6	3/2	1600
9.,04 26 1.99 16.9	18.8	3/2	1600
10. 104 26 20 1.70	18.6	3//	1600
Length of Test in minutes	9	niN	
Signature of Technicians	_	(C	

	Exh	aust Gas 1	Analysis For	<u>n</u>	OLOX
Name of Company	y	TRIAN	GLE		9
Date of Test_	m	Ay 20	, 1987		
Type of Equipme					
Ingine Type and	i Specs	430	DET	TURBO	
Identification	No.	115	Milaa	ge 4816	74
Type of Test					
Ambient Air Te	mp	e e e e e e e e e e e e e e e e e e e			
	1	3 Exhaust	Readings		
<u>CO</u>	<u>HC</u>	<u>CO</u> 2	02	Exh. Temp.	<u>RPM</u>
1. 101	18 13.7		1/8.2	316	1900
3. 101840	18 1.89	11.93	18.3 2.6	317	1900
3. 101	18	1.85	18.6	314	1900
4. 101	18	1.85	18.4	314	1900
501	17	1.87	18.9	312	1900
601	18	1.67	18.6	289	1600
76/	18 1.69	1.69	18.6	286	1600
8. ,01	18	1.69	19.0	287	1600
901	17	1.70	18.6	286	1600
10.,01	18	1.69	19.1	283	1600
Length of Test	in minutes	5	10	min	
Signature of I	echnicians	At the state of th			

Exhaust Gas Analysis Form TRIANGLE GAS Name of Company Date of Test____ Type of Equipment Tested_ Engine Type and Specs 350 Identification No. 117 Milage Type of Test Ambient Air Temp. Exhaust Readings RPM Exh. Temp. 1900 368 1900 1900 364 363 1900 363 1900 944.337 1600 337 1600 1600 335 1600 1600 333 Length of Test in minutes 12 min Signature of Technicians

Memorandum Report

To: Dave Zinn

Triangle Oil Company

From: Craig Flinders

UHI Corporation

Date: May 5, 1987

Subject: Analysis of Baseline Exhaust Gas Data

Accompanying this memorandum report find a, 1) computerized summary of the averages for the exhaust gas data recorded during the recent FPC-1 baseline test at your facility, 2) a graph of the percent CO2 in the exhaust stream (fuel flow) comparison for the three trucks (units 115, 101, 102) powered by Detroit 430 engines at 1600 and 1900 rpm, and 3) the formuli for the calculation of the engine performance factors.

Two comparisons will be made in this brief summary report. The first is a comparison of fuel flow to the engine as measured in percent CO2 at 1600 and 1900 rpm, respectively, for the three 430 powered units. These three trucks are used in this comparsion because the 430 engine is the most common in the fleet. The data is graphed and shows that fuel flow is substancially lower at 1600 rpm.

Although this comparison has no bearing on the outcome of the FPC-1 test, it does demonstrate that changes in fuel flow can be monitored using exhaust gas analysis. As you can see, the method is reliable as all major exhaust gases show changes that correspond with the reduction or increase in rpm and fuel flow.

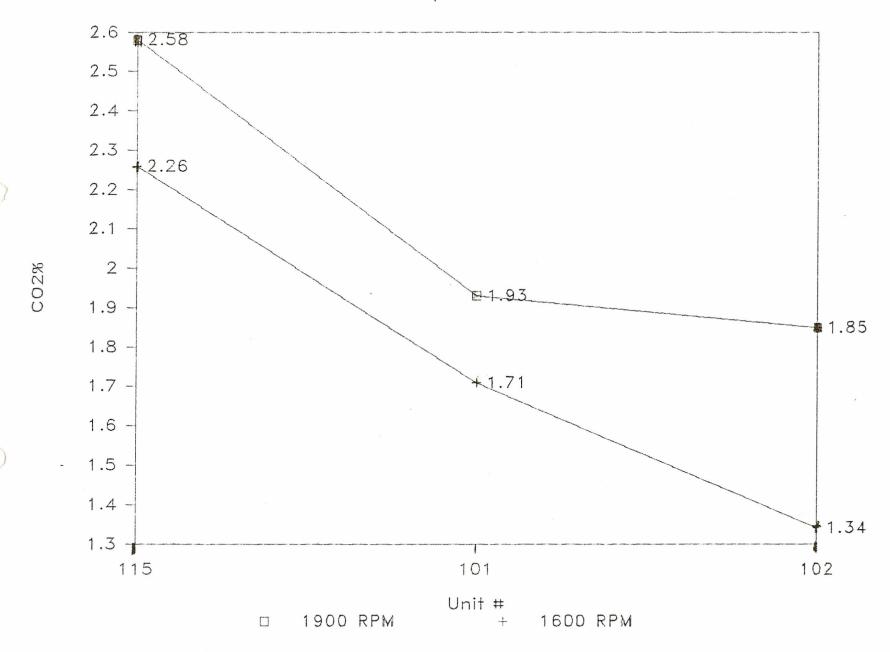
The second comparison is done between the same three trucks at the same rpm and demonstrates which of the trucks is the more fuel efficient. The following table lists the trucks by unit number and makes the comparison at 1900 rpm. Again, fuel flow in terms of percent CO2 in critical to the comparison. Also included in the table are the engine performance factors calculated using the standard engineering formuli enclosed and the total molecular weight of the gases measured in the exhaust stream of each truck.

Comparison of 430 Detroit Engines at 1900 RPM

Unit #	%CO2	Molecular wt	. Performance factors
115	2.58	29.04	152,891.02
101	1.93	29.07	193,082.34
102	1.85	29.15	206,538.49
	UHI CORPORATION	750 North 200 West Suite 306	Provo. Utah 84601 (801) 374-9010

Based on the CO2 concentrations and the resultant engine performance factors, Unit 102 is the most efficient of the three 430 powered trucks. Unit 102 is 6.52% more fuel efficient than Unit 101 and 25.97% more efficient than Unit 115. If Unit 101 were averaging 5.0 miles per gallon, the following milages would be indicative of what I would expect to see in the other trucks based upon the CO2 in the exhaust stream:

Unit #	MPG
101	5.0
102	4.67 (-6.52% from 5.0)
115	3.70 (-25.97% from 5.0)


The pattern is similar for the same trucks at 1600 rpm.

Once again, this has little bearing on the outcome of the FPC-1 trial you are performing except that it gives greater credence to the exhaust gas analysis method of determining fuel flow changes to the engine.

* Notes on Performance Factors:

- 1. Engine performance factors are calculated and use the total molecular weight of the exhaust gases (CO2, CO, HC, O2), the exhaust temperature, and the exhaust airflow rate data. The engine performance factor does not produce an absolute change in mileage since distance traveled is not determined in the exhaust gas test method. However, the method does provide a means of determining how efficiently the engine uses the fuel it receives and, therefore, engine performance factors can be used to determine comparative changes in fuel flow to the engine.
- 2. The higher the engine performance factor the more efficiently the engine is using the fuel. Once the performance factors are calculated, a simple subtraction and computation of the percent change will reveal the change in fuel flow to the engine. In most cases, the fuel flow change will correspond closely to the change in CO2.
- 3. The use of engine performance factors requires that baseline rpm and exhaust temperatures be reproduced in the FPC-1 treated fuel test segment. This will eliminate any variability in temperature and airflow.

Fuel Flow Comparison/430 Detroit

Triangle Oil Company 1900 RPM Data

Unit	Engine	CO2	HC	CO	02	Temp. 310.2 269.6 291.4
115	430	2.58	21.2	0.02	18.04	
101	430	1.93	22	0.014	18.92	
102	430	1.85	17.8	0.02	18.52	
117	350	1.91	29	0.028	18.72	354.6
112	350	2.42	21.6	0.024	18.04	354.6
114	400	1.71	28.2	0.03	19.1	355,6
116	400	2.15	22.2	0.03	18.72	366
30	673	2.8	35	0.046	17.74	352
486	673	3.22	33.8		17.22	439.2
		Triangle	Oil Company	1600 RPM	Data	
115	430	2.26	22	0.02	18.62	282.6
101	430	1.71	23	0.02	18.96	248.2
102	430	1.34	20.4	0.02	19.24	253.6
101	430	1.71	23	0.02	18.96	248.2
101	430	1.71	23	0.02	18.96	248.2
102	430	1.34	20.4	0.02	19.24	253.6
117	350	1.63	26	0.02	19.08	333.6

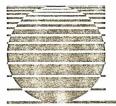
Exhaust Gas Analysis Form

Name of Company	
Date of Test	
Type of Equipment Tested	ŧ
Engine Type and Specs 673 285 H.P.	
Identification No. 1486 Milage 61794	
Type of Test	
Ambient Air Temp.	· 8
Exhaust Readings	
CO HC CO O2 Exh. Temp.	RPM
1.03 32 3,20 17.1 435	1900
2.93 32 3,22 17.1 438	1900
3.0.3 35 34.23 17.1 437	1900
4.03 35 3123 17.6 436	1900
5.13 35 3,23 17,2 450	1900
6.13 35 251 120 332	1600
703 35 2,50 18.1 373	1600
803 35 250 18,1 374	1600
9.03 35 2,50 18,0 372	1600
10.03 35 2,50 17.9 370	1600
Length of Test in minutes 10 min.	
Signature of Technicians	

	Exhaust Gas Analysis Form							
Name of Company	TRIANGLE OF	<i>ا</i> د						
Date of Test	Date of Test APRIL 16, 1987							
Type of Equipment Te	,	×						
Engine Type and Spec	es MACIL	673 T						
Identification No	30	Mil	age 17600	3/				
Type of Test								
Ambient Air Temp								
	Exhaust	Readings						
CO HC	<u>CO</u> 2	02	Exh. Temp.	RPM				
1. 05 34	2,86	17.4	348	1908				
2.95 36	2,84	17.4	350	1900				
3.05 35	2.78	R.5	354	1900				
4.04 35	2,77	17.7	354	1900				
5.04 35	.2,77	17,7	354	1900				
6.05 35	2,26	18.2	302	1600				
7.05 35	2.26	18.2	299	1600				
8.05 35	2,28	18.5	299	1600				
9.05 36	2,28	18.2	304	1600				
10.05 37	2,28	8.2	301	1600				
Length of Test in m	inutes //	mino		Topic Acidian				
Signature of Technic	///	7,707						

RIGHT Side EXH

		Exhaust Ga	as <u>Analysis</u>	Form	8		
Name of Com	Name of Company TRIANGLE GAS						
Date of Test 4-17-87							
Type of Equ	Type of Equipment Tested						
	Engine Type and Specs 400 cum Turbo						
		700		r o n p s			
Identificat	ion No.	116	IV.	lilage 240	490		
Type of Tes					¥		
Ambient Air	Temp. $\underline{5}$	3					
		Exhau	ust Readings	5			
<u>CO</u>	HC	<u>co</u> 2	02	Exh. Temp.	RPM		
1. 03	22	2.14	18.7	357	1900		
203	22	•	18.4	367	1900		
3. ,03	22	2,15	19.0	366	1900		
403	22	215	18.5	366	1900		
5 03	23	.2.14	19.0	363	1900		
6	24	1.91	1817	321	1600		
7. 103	24	1.89	18.7	3/9	1600		
803	24	18,7	19.2	323	1600		
903	23	1.90	18.8	324	1600		
1003_	24	1.87	19.7	323	1600		
Length of To	est in mi	nutes	9				
Signature of	f Technic	ians			2		



		Exhaust Ga	as <u>Analysis</u>	Form				
Name of Company TRIANGLE GAS								
Date of	Date of Test 4-16-87							
Type of	Type of Equipment Tested							
Engine T	Engine Type and Specs 400 CUMMINS TURBO							
Identifi	.cation No	114		Milage	113792			
Type of	Type of Test							
Ambient	Air Temp							
		Exhai	ust Reading	S				
<u>CO</u>	HC	<u>co</u> 2	02	Exh. Temp	RPM			
10	3 28	1.71	19.5	355	1960			
20	3 25	1.70	18.9	356	1900			
30	3 28	1.72	19.4	356	1900			
4. 0	3 29	1.70	18.9	355	1900			
503	3 28	1.72	18.8	357	1900			
603	3 24	1.43	19.	332	1600			
703	3 27	1.42	91	332	1600			
80	3 28	1.48	19.3	332	1600			
9. 102	28	1.51	19./	832	1600			
10	3 28	1.51	19.3	33/	1600			
Length o	of Test in m	inutes	9					
Signature of Machaiaiana								

		Exhaust Gas	<u>Analysis</u>	Form			
Name of Com	ipany	TRIANGLE	CAS				
Date of Tes	st	4-16	-87				-
Type of Equ	ipment Te:	sted				ł	
Engine Type	and Speci	350	CUM	mi NS	TUR	ВО	
							The state of the s
Identificat	ion No	112	I	Milage	0274	59	******
Type of Tes	st						
Ambient Air	Temp						×
		Exhaus	st Reading	S			
CO	HC	<u>CO</u> 2	02	Exh. T	emp.	RPM	
1. 103	22	2,4/	18.0	35	6	1900)
2. N3	22	2.44	17.9	356	,	1900	0
3.102	2/	2.40	18.2	353		190C)
4.02	2/	2.42	18.1	351		1900	
5.02	22	2,42	18.0	357		19.00	
6.02	24	1,89	18.7	310		16001	55C
7.02	24	1,89	18.7	309	,	1600 1	550
8.02	24	1,89	18.7	309	,	1600 1	550
9.02	22	1,87	18,9	308		160613	550
10.02	23	1,87	8.7	307		1600 1	550
Length of T	Test in mi	nutes/	2 HIN)				
Signature o	of Technic	ians					

Exhaust Gas Analysis Form						
Name of Comp	oany	TRIAL	KLE OIL	•		
Date of Test	-	APRIL	16, 19	37		
Type of Equi			/		ŧ .	
Engine Type	and Specs	350	Clemnins	TURBO		
Identificati	ion No	117		Milage \$\frac{7392}{}	6	
Type of Test	5					
Ambient Air	Temp. 4	70			* ব	
		Exha	ust Reading	S		
<u>CO</u>	HC	<u>co</u> 2	02	Exh. Temp.	RPM	
103	29	1,96	18.3	351	1900	
2. , 02	31	1.90	18.4	353	1900	
303	28	1.89	19.0	354	1900	
403	29	1.89	18.7	357	1900	
503	28	. 1.89	19.2	358	1900	
6. ,02	26	1.64	19.0	332	1600	
7. 102	26	1.64	19.0	334	1600	
802		1.63	19.4	335	1600	
902	26	1.64	18.9	334	1600	
10. رو	26	1.64	19.1	333	1600	
Length of To	est in mir	nutes	II mis	1		
Signature of	f Technici	ans				

	Exhai	<u>ust Gas An</u>	alysis Form		
Name of Company_	TRI	snale	GAS		
Date of Test	4-1	7-87			
Type of Equipment	Tested	,		9	ł
Engine Type and S	Specs (440	DET.	TURBO	
	,				
Identification No	/0	2	Milage_	491 188	
Type of Test			4.		: .
Ambient Air Temp.					
		Exhaust R	eadings		
CO HO	C CC	<u>)</u> 2	02 <u>E</u> xh	Temp.	RPM
102 2		.99		290	1900
2. 162 2	24 :	204	18.7	29/	1900
3. $\frac{62}{62}$	5	1.34	18.7	293 -292	1900
402 /	5	76	18.6	291	1900
502 1	3 .	1.71	187	292	1900
6. ,02 1	7 1	.35	19.1	254	1600
702 1	8 1	.33	19.1	257	1600
_	13 /	,35	19.5	254	1600
		.35	19.1	253	1600
10.,02 2		.33	19.4	254	1600
Length of Test in	minutes_	9			
Signature of Tech	nicians				

Exhaust Gas Analysis Form							
Name of Com	Name of Company TRIANGLE OIL						
Date of Test 4-16-87							
Type of Equipment Tested							
Engine Type	and Spec	es 8'	92 43	O DET D	TURBO		
	-						
Identificat	ion No	101	Ŋ	Milage	6138490	HOL	
Type of Tes	t						
Ambient Air	Temp	reporture and the Marie Assessment					
		Exh	aust Readings	5			
<u>CO</u>	HC	<u>CO</u> 2	<u>02</u>	Exh. Temp.	RPM		
		~		269	1900		
2	22	1.94	18.6	270	1900		
3. ,02	22	1.93	19.5	269	1900		
4 02	22	1.93	18.7	269	1900		
5. 101	22	1.92	19. 2	271	1900		
602	22	1.71	18.8	250	1600		
702	22	1.71	18.8	250	1600		
802	24	1:70	18.9	248	1600		
902	24	1.70	18.9	247	1600		
10. 02	23	1.71	19.4	246	1600		
Length of I	est in m	inutes	11				
Signature o	of Techni	cians					

		Exhaust Gas	Analysis Fo	orm	
Name of Com	pany	[RIANGL	E		
Date of Tes	t	4-17	-87	was the second of the second o	
Type of Equ	ipment Tes	sted			
Engine Type	and Specs	430	DET	TURBO	
Identificat	ion No	115	Mil	age 474	779
Type of Tes	t	Line - Li			,
Ambient Air	Temp				*.
		Exhaus	t Readings		
<u>CO</u>	<u>HC</u>	<u>CO</u> 2	02	Exh. Temp.	RPM
102	22	262	18,0	309	1900
202	24	2.61	17.9	311	1900
3,02	22	2.56	18.4	310	1900
4. 02		2.56			1900
502	19		17.9	3/0	1900
602	22	2.29	18.4	281	1600
702	22	2,23	18.4	283	1600
802	22		18.9		1600
902	22	2.26	18.4	283	1600
1002	22	2.24	19.0	281	1600
		utes	8		

Signature of Technicians_